Nanocrystalline materials and coatings
نویسندگان
چکیده
In recent years, near-nano (submicron) and nanostructured materials have attracted increasingly more attention from the materials community. Nanocrystalline materials are characterized by a microstructural length or grain size of up to about 100 nm. Materials having grain size of 0.1 to 0.3 mm are classified as submicron materials. Nanocrystalline materials exhibit various shapes or forms, and possess unique chemical, physical or mechanical properties. When the grain size is below a critical value ( 10–20 nm), more than 50 vol.% of atoms is associated with grain boundaries or interfacial boundaries. In this respect, dislocation pile-ups cannot form, and the Hall–Petch relationship for conventional coarse-grained materials is no longer valid. Therefore, grain boundaries play a major role in the deformation of nanocrystalline materials. Nanocrystalline materials exhibit creep and super plasticity at lower temperatures than conventional micro-grained counterparts. Similarly, plastic deformation of nanocrystalline coatings is considered to be associated with grain boundary sliding assisted by grain boundary diffusion or rotation. In this review paper, current developments in fabrication, microstructure, physical and mechanical properties of nanocrystalline materials and coatings will be addressed. Particular attention is paid to the properties of transition metal nitride nanocrystalline films formed by ion beam assisted deposition process. # 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Wear behavior of carbon steel electrodeposited by nanocrystalline Ni–W coating
Ni-W coatings, compared to pure nanocrystalline Ni, exhibit higher hardness and wear resistance. In some cases, these coatings are considered as environmental friendly alternatives for hard chromium coating. Till now, most of Ni-W coatings have been produced by direct current electrodeposition from alkaline baths. In this study square pulse current was used for deposition of Ni-W precipitates f...
متن کاملPreparation of Nanocrystalline CdS Thin Films by a New Chemical Bath Deposition Route for Application in Solar Cells as Antireflection Coatings
Nanocrystalline cadmium sulfide thin films as antireflection materials for solar cells have been prepared by a new chemical solution deposition route in an aqueous medium at 50 °C. as-deposited thin films were studied using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and optical absorption spectra. X-ray diffraction data indicated the formation of hexagonal na...
متن کاملThe effect of saccharin on microstructure and corrosion behavior of nanocrystalline nickel thin films in alkaline solution
In this study the effect of crystallite size reduction and microstructure on the electrochemical corrosion behavior of nanocrystalline nickel (NC Ni) were investigated using Tafel polarization and electrochemical impedance spectroscopy (EIS) measurements in 10 wt.% NaOH. NC Ni coatings were produced by direct current electrodeposition using chloride baths in presence and absence of saccharin as...
متن کاملEvaluation of Tool Performance With Nanocrystalline Multilayer Coatings on the Machinability of Superalloy Inconel 718
In this paper, the performance of the cutting tool with nanocrystalline multilayer coatings (TiN+TiAlN) for machining of superalloy Inconel 718 in the dry and wet conditions was studied. The multi layer TiN and TiAlN with nanocrystalline structure was applied by physical vapor deposition technique (arc evaporation) on the WC-Co inserts. The results of the ball on disc wear test and the machinin...
متن کاملBiomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants
Natural bone consists of hard nanostructured hydroxyapatite (HA) in a nanostructured protein-based soft hydrogel template (ie, mostly collagen). For this reason, nanostructured HA has been an intriguing coating material on traditionally used titanium for improving orthopedic applications. In addition, helical rosette nanotubes (HRNs), newly developed materials which form through the self-assemb...
متن کامل